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Confirmation of Primary Active Substances from High Throughput
Screening of Chemical and Biological Populations: A Statistical
Approach and Practical Considerations

Ji-Hu Zhang,* Thomas D.Y. Chung, and Kevin R. Oldenburg

Leads Discoery, Experimental Station, DuPont Pharmaceuticals Company, P.O. Box 80400,
Wilmington, Delaware 19880-0400

Receied Naember 3, 1999

Many biologically important substances are discovered through screening of relevant chemical or biological
libraries. The ability to find the active substances (“hits”) from any random collection is largely determined

by the quality of the assay and screening conditions. When a large population is screened for a specific
characteristic, each member of that population is usually tested only once. Errors in the measurements require
additional follow-up tests to confirm that each hit from the primary screen is #&ttiye. In this report, we

present a statistical model system that predicts the reliability of hits from a primary test as affected by the
error in the assay and the choice of the hit threshbitlinit). The hit confirmation rate, as well as false
positive (representing substances that initially fall above the hit limit but whose true activity are below the
hit limit) and false negative (representing substances that initially fall below the hit limit but whose true
activity are in fact greater than the hit limit) rates have been analyzed with this model by computational
simulation. This model can also be used in screen validation and post-screening data analysis. The statistical
analysis presented here has broad implications and is applicable to screening of any large population for
any specific characteristic. Obvious applications include drug discovery, gene chip analysis, population
biology, directed molecular evolution, biological panning, and combinatorial material sciences.

Introduction substances that display (biological) activity significantly
different from the rest of the chemical or biological library.
One of the fundamental issues that needs to be clarified is
the reliability (or confirmation) of screening results and the
main factors affecting it. Moreover, since each HTS cam-
paign is a significant expenditure in terms of labor, time,
and resources, it is crucial to have, during the assay and
screen validation process, a quantitative analysis of the
capability of a particular screen to identify the majority of
potential hits residing in the chemical or biological library.

Screening of random compound collections for identifica-
tion of leads for drug development has been largely a
practical endeavor in the pharmaceutical industry for many
years'? Recent advances in drug target identificatioh,
chemical compound library constructi®éhdevelopment of
high throughput assay methodologfesnstrumentation,
automation, and ADME (adsorption, distribution, metabo-
lism, and excretion) characterization have transformed the
area of high throughput drug screening into a rapidly . ) . . .
growing, multi-disciplinary scientific and technological field. Th? confirmation rate of hits from the primary screen 1
As the throughput of screening increases and the strategies, a.mly affepted by (a) the HTS assay quallty, (b) the hit
for construction of chemical libraries is optimized, it is almost imit selection, gnd (c) the primary hit profille. Among Fhem,
certain that the number of active compoundst§’) resulting the assay qqallty plays the primary rple n det_ermlnlng the
from primary screening will increase considerably. The hit confirmation raté. The scope of this paper is to further

efforts to confirm the activity of these increasing numbers dell?_eatet_ the ?ffeCtS Of“ these Izct(f)rls on th.? prlmzryf/ Ih't
of primary hits, either from a potency screen or an ADME- confirmation rate as wetl as on the laise posiive and faise

type screen, will be nontrivial. negative rates, from both a statistical and a practical view.

In most high throughput screening (HTS) programs, each The drug discovery analysis prese_nted her_e is_ a specif_ic
substance is usually tested only in singlet due to reagent,casfa from the broad spectrum Qf po_ssm.le a_ppllc_atlons of this
labor, time, and cost considerations. Hits need to be identified statistical model. There are obvious implications in areas such
in the presence of and despite a certain degree of variabilityas populgtion biologyz directed_molecular e\{olutiorl, bioIogi_—
in signal measurement from any assay. A high degree of ca] panning, gene chip analysis, and combinatorial material
accuracy and sensitivity in the assay is therefore critical for sciences.
identifying hits. Ahigh qualityHTS assay must be able to A Statistical Model
identify, with a high degree of confidence, those few
Screening a large, random chemical or biological popula-
* To whom correspondence should be addressed. tion in order to find the few active substances (hits) involves
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Figure 1. lllustrations of the statistical distribution functions used
in the text: A, the population distributiori(u), in respect to the
hit limit (h) and primary hits (shaded area). Functi@um a priori
can be any population distribution. A Gaussian distribution is
assumed here fof(u) with a standard deviationgs. B, the
measurement variability functionf(w), which is a Gaussian
distribution with a standard deviatiow.. C, the corresponding
cumulative Gaussian distribution dfw), namely P(v), which
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density function (or distribution of population, Figure 1A).
f(u) in eq 1 can be any function that approximates the
population distribution. The numerator integral in eq 1
represents the total confirmed hits, and the denominator
integral corresponds to the total number of primary hits.

The probability of false positives and false negatives can
also be assesseHalse positie hitsrefer to those primary
hits that are subsequently shown to have an actual activity
below the hit limit. The overalfalse positie rate (FPR) is
given by

FPR=1-CR (2)

False negatie hitsare those that are missed in a primary
screen. Théalse negatie rate(FNR) of a screen is defined
as the following:

FNR = number of missed hits/(number of missed hits
number of confirmed hits).

The expression for calculating the false negative hit rate

represents the confirmation probability of a compound at a specific j5 thys given by

activity (shown one attU and one at-U) in respect to the hit
limit (h).

statistical decisions. These statistical decisions are related
to classical hypothesis testing used in quality control evalu-

" f(u) P() d
FNR= J-a 0 PO (3)

" f(U) P) du+ [°f(u) P() du

ation® For drug screening, a substance (compound) scores

as “active” when its activity liesat or beyondthe set

where againP(v) is the probability function for hit confir-

threshold (i.e., the substance shows an activity different from mation and(u) is the distribution density function (distribu-

the mean activity of the population by the threshold value).

The threshold (thdit limit) for declaring ahit (usually an

tion of population, Figure 1). It should be noted here that
the confirmation, false positive and false negative hit rates

activity outlier) is generally expressed as a certain activity defined above are conventional in drug screehamg may
value or a number of standard deviations away from the meanbe distinct from those used in statistical hypothesis tesfing.
of the library population in a primary screen. To be consistent In the same vein, statistical “outliers” may not be the only
and avoid any discrepancy in derivation and use of the hits in conventional drug screening.

working model and its conclusions, the term “confirmation”
of hits is specified here as the following.

Confirmation.Upon retesting, @onfirmedhit is defined
as having an activitgqual to or greater thaithe threshold
value (the hit limit) by which the primary hits were identified
in the primary screen.

Thus, the hit confirmation rateefers to the ratio of the
number of confirmed hits to the total number of primary
hits included in the confirmation testing from a primary

A Case Study: A Gaussian Population Approach for
Confirmation, False Positive, and False Negative Rates

To deduce a useful statistical model for the hit confirma-
tion rate, it is first assumed that each individual hit, when
tested repeatedly, regardless of its activity, exhibits a
Gaussian distribution profile around its “true” value of
activity. Second it is assumed that the error at any point in
the activity dynamic range is kept the same, wittoastant

screen. Figure 1 illustrates the population distribution and standard deviationy. (the constant error assumption). The

the hit confirmation probability. Clearly, the primary hits
are the fraction of the population to the right of the hit limit,

latter assumption is for the simplicity of the model and is
obviously not always true since in many cases the errors are

h (shaded area in Figure 1A. See Appendix for an explanation “proportional” (vide infra).

of each symbol or abbreviation used in the text).

At activity U, the confirmation rate is proportional to the
probability of a hit being confirmédmultiplied by the
frequency (or density) of compounds at that activity.
Therefore, the overall confirmation rate (CR) for all the
primary hits (4 = h) from a population screen is

R J71(u) P() du

- )
J:7f(u) du

whereP(v) is the probability function for hit confirmation

(Figure 1C, which is related to the variability of measure-

ments in the screen, Figure 1B) affd) is the distribution

Under these assumptions, the probability function for hit
confirmation,P(v), in egqs 1 and 3 can be expressed as the
cumulative function of a Gaussian distribution function for
the variability of measurement§y), which is closely related
to the error function (Figure 1B). It should be noted that
P(v) is the same function used for the probability of a
substance being declared a hit (scored “positive”) in primary
screening:'*

Different chemical and biological libraries will have
different population distribution profiles. As a case study, it
is further assumed here that the (chemical or biological)
population approximates a Gaussian or normal distribution.
This is mainly for the theoretical calculations as in many
practical cases the population distribution will deviate from
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o

Gaussian. (The distribution of a particular variable of a
population may deviate at various extents from an ideal
Gaussian distribution in modality, skewness, kurtosis, etc.) s o
However, for the primary screen based on a large, unbiased, — 05 03 -
random chemical or biological library, the activity profiles
from these chemical or biological populations would ap-
proximate a Gaussian or normal distribution based on the
central limit theorem. This assumption largely holds true for
at least the bulk of the population of random collectié#s.
Under these limitations, the formula for the population
distribution,f(u), can be estimated by a Gaussian distribution
function, with a standard deviation afs. Therefore,os 00 - - " " - - -
contains both the Var|ab|l|ty between different members of Hit limit (distance from the population mean, in os)
the library (i.e., treatment effect or diversity) and the Figure 2. Calculated confirmation rate curves based on eq 1 in
measurement error of the assay. the text. Thex-axis is the distance of the hit limit from the mean
activity of the population, in standard deviations)( os contains

Under the above_ gssumptions, the hit confirmation raté poth the assay measurement error and the variability between each
(CR), the false positive rate (FPR), and the false negative members of the library (i.e., treatment effect). Each line represents

rate (FNR) can be expressed as functionsqfthe standard @ specific assay variability ratios{ /os) as indicated. The curve

deviation of the Gaussian function for measurement vari- 2€Y0nd @s is shown mainly for displaying the trend of the curve
for a pure Gaussian distribution, since any hit in this rarrg@of)

ability), os (the standard deviation of the bulk population s jikely to belong to a second population distribution. When the
distribution, this representing a combination of treatment hit limit is set infinitely far to the right from the population mean,

effects and assay measurement error), larfthe hit limit 3” thg |9ur¥e$hWi|| ﬁDP{OQCh_CR ?-5 (SZOWF_‘ asghe”\?glf_izggzg
: . . ._dotted line). e calculation is performed using the

cutoff yalue). The de_talled expression eqL_latloqs and the'runivarate quadrature routine (see Appendix).

deduction are given in the Appendix of this article. From o _ _

these equations (eqs A4 and A5 in Appendix), the CR and  Effects of Hit Limit Setting and Screening Assay

Cc/Os= 1.0
0.6

0.4 4

Confirmation rate

0.2

FNR values at the extremes can be deduced. For example, Quality

when the assay has no measurement error, i.e., when Figure 2 shows a series of curves that simulate the overall
0, P(v) — 1 (for activity U = h) or P(v) — 0 (for U < h). confirmation rate (see eq A4 in Appendix) as a function of

This is equivalent td®(v) being a step function dt. Thus, the distance that the hit limit is placed from the mean activity

CR— 1 and FNR— 0. These results are obvious because Of the population 4s), in units of standard deviatiorvy),
when there is no error in measurement, every primary hit based on a Gaussian population. Numerical integration was
should be a true hit and no hit is missed from the screen. At Performed using the IMSL QDAG univariate quadrature

the other extreme, when is extremely larged. — ), then routine (ref 12, see Experimental Protocol in Appendix). The
P(v) — 0.5, and CR— 0.5. All the declared hits have a results from this calculation demonstrate that the overall

confirmation rate of the primary hits varies with the
placement of the hit limit and the assay quality. Intuitively,
if only potent hits were chosen from the primary screen, the
likelihood of these hits being confirmed is high. Somewhat
The hit limit setting not only affects the number of declared  syrprisingly, the general trend is that the overall confirmation
hits from a given screen, but also affects the number of false-rate decreases as the hit limiif) (noves further away from
positive and false-negative hits. Basically, the hit limit setting the mean activity of the Gaussian populatiqn)( The
(h) affects the hit confirmation rate and the false negative decrease in the confirmation rate is more prominent in the
rate by changing the integration boundaries of eqs 1 and 3.early part of the curve and gradually levels off as the hit
It should be noted that eq 1 defines tloeerall hit limit is further away from the activity mean of the population.
confirmation rate§ > h) of a Gaussian population and can For any screen with a finite measurement erray),(the
be easily modified for calculating the hit confirmation rate confirmation rate approaches 0.5 when the hit limit is set
within any given range of activity fromato b (b >a > h), infinitely far from the mean of the population. Consequently,
by adapting these boundaries to the integrals in the equationSetting the hit limit further away from the activity mean of

Most notably, it will give the confirmation rate of a specific the Gaussian population will yield hits with higher activity
“bin” of primary hits. (at higher confidence level for being “outliers”) but will

. . decrease the hit confirmation rate. The reasons for this
Equations 1 and 3 above are derived for a screen where

i V= seemingly counter-intuitive result are severalfold. First, as
each compound is measured only once. If multiple indepen- entioned earlier, the definition of a “confirmed hit” is to

dent measurements are performed for each data point, therzompare the hit's activity from confirmation testing to the
the standard deviation of the mean imeasurements is  pre-set “hit limit” value in the primary screen rather than to
given by gae = ad/v/n. Use of gae in place of o in the the population activity mean. Second, this result is based on
equations will yield the confirmation rate for multiple a pure Gaussian population model. When the normality of a
measurements (see Appendix). real population deviates from pure Gaussian, which is usually

50—-50 chance of being confirmed. CR 0.5 is therefore
the lower limit for the hit confirmation rate. FNR under this
extreme condition depends solely on the hit limit setting.
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Protocol in Appendix for calculation details). It can be seen
that, as the assay quality deteriorates lfecomes larger),
the false negative rate increases sharply then levels off as it
approaches a maximum value of 1. For example, winen

= 0.30s (the assay variatior() is about 30% of the standard
deviation of the Gaussian populations)) and the hit limit

is set at 2.6s from the mean, the assay will miss ap-
proximately 50% of the potential hits in the primary screen.
Also, setting the hit limit further away from the mean of the
population will increase the false negative rate. Therefore,
this poses a dilemma as to where to set the hit limit for a
0 Gaussian population. Setting the hit limit distant from the
00 1 20 o0 0 50 o0 mean of the population will increase the activity (potency)
and confidence limit of the hits (being different from the

False negative hit rate

Hit limit (distance from the population mean, in s )

" Figure 3. Calculated false negative rate curves based on eq 4 in ; i "
the text. Thex-axis is the distance of the hit limit from the mean population mean) but also willincreabeththe false positive

activity of the population, in standard deviations)( os contains and false nggatlve rates in a primary screen _(omy_ true fora
both the assay measurement error and the variability between eactpure Gaussian model). However, when the hit limit is set at
members of the library (i.e., treatment effect). Each line represents ~3os or beyond, this pure Gaussian model calculation would
a specific assay variability raticvfos) as indicated. The curve  deviate from many practical populations as those potent
beyond 3 is shown mainly for displaying the trend of the curve oo mn6unds, which are outliers of the population, should
for a pure Gaussian distribution, since any hit in this rarrg8of) . .
is likely to belong to a second population distribution. actually belong to a second population (vide infra).
Equation 3 is crucial in the evaluation of the false negative
the case, the confirmation rate prediction in these cases wouldrate for any particular screen because the false negative rate,
deviate from the model case, particularly when the hit limit unlike the false positive rate, cannot be assessed easily in
is set beyond & from the population mean, as will be practice. Equation 3 (and its equivalent eq A5 in Appedix)
discussed further in the next sections. provides a theoretical method for evaluating the false
It is important to note that the confirmation rate depends Negative rate. However, the calculations shown in Figures 2
heavily on the assay variabilityi.. The confirmation rate ~ @nd 3 only represent an ideal case when the population
improves significantly as, decreases. For example, at a hit distribution obeys aGaussian distribution In practice,
limit set at 35, an assay with variabilitys) values of 1.0, various deviations fro_m this theoret_lcal anal_y5|s can be
0.505, and 0.2 will yield overall hit confirmation rates of e_ncountere@. Several |mp9rtant practical considerations are
0.60, 0.69, and 0.81, respectively (Figure 2). The assaydiscussed in the next sections.
variability also determines the lower hit limit setting. The
lower hit limit is the lower limit of detection (LLD) of the
assay, i.e., ah > 30, above the mean activity (which is The overall number of hits and the confirmation rate for
equal or close to zero). These results clearly indicate thatthese hits can be projected early in the validation process of
the assay data variability plays an important part in determin- the screen once the assay quality and the hit limit are known.
ing the confidence level of the primary hits generated from Equations 1 and 3 can be employed to estimate the outcome
the screen. Recently it has been suggested that the assagf the screen from the validation and initial screening data.
quality can be expressed by tAefactol (Z = 1 — (3ot It has been indicated previously that the overall outcome from
+30c- ) |ucr — uc-|, see Appendix foZ'-factor andZ-factor a screen depends mainly on (a) the screen assay quality, (b)
definitions.). It can be seen that, under the above constantthe hit limit selection, and (c) the primary hit activity proffle.
error assumption (such that.+ and o.- are equal or  The hit profile from a primary screen is largely governed
comparable tar.), the Z'-factor is inversely proportional to by the library diversity and concentration used in the screen.
0., assuming the dynamic range of the assay is kept constantin practice, there are basically three scenarios that need to
Therefore, the assay quality (tZefactor) has a direct effect  be considered.
on the confirmation rate when the assay is used for screening. The first scenario is when the hit limit is chosen3os,
It is interesting to note that the confirmation rate has a direct e.g.,~20. This will intrinsically yield high overall hit rates
relationship with theZ'-factor of the assay, not necessarily (~2% for a Gaussian population distribution). This is
with the Z-factor of the screen. The reason for this is that typically true when weaker hits are desired and/or the
the Z-factor for a screen is more indica¢i of the screen  screening quality is not superior (8 Z < 0.5). In this

Effects of Primary Hit Profile

“window” for identifying hits and is test library sensite scenario, the bulk population distribution (which approxi-
while the Z-factor is indicatve of the measurementri- mates a Gaussian) dominates the calculation around the hit
ability of the assay and is test library independ&nt limit. Therefore, the confirmation rate (CR) and false

On the basis of eq 2, the curves that describe the falsenegative rate (FNR) can be estimated quite well from the
positive hit rate (FPR) are therefore the mirror images (about calculations shown in Figures 2 and 3.
the line CR= 0.5 in Figure 2) of those for the confirmation In the second scenario, usually when the assay quality is
rate. Figure 3 shows the calculated false negative hit rate asvery high € > 0.5) and only potent hits are of interest, the
a function of the hit limit and assay quality (see Experimental hit limit can be set at>3os. In this case, the bulk of the



262 Journal of Combinatorial Chemistry, 2000, Vol. 2, No. 3 Zhang et al.

ALOW

CR e

=]
P

0.8 1 0.8

o 2
8 g
o =
[ Q
= j =
o 0.6 o 06
7] 0
s Gc/Gs =0.1 s
5 <]
o 04 Q 04 -
8 02] R e O 024 Go/0s =1.0

00 /‘—‘\ oo | | | | |

0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0
Hit limit (distance from the Gaussian population mean, in s) Hit limit (distance from the Gaussian population mean, in cs)

1.0

=

o
)

Gc/os = 0.1

o
o

I
~
|

@
(¥
.

02 4 G/0s = 1.0

Conf. rate or false neg. rate ™
Conf. rate or false neg. rate

0.0

T T T T T 0.0 T T T T r
0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

Hit limit (distance from the Gaussian population mean, in os) Hit limit (distance from the Gaussian population mean, in os)

Figure 4. Calculated confirmation rate (CR, shown@Jpsand the false negative rate (FNR, showngsof a population when 99.9% (the

bulk population) obeys a Gaussian distribution and 0.1% of the population belongs to a second distribution. A and B, the 0.1% percentile
of the population resides awgfrom the mean of the bulk population, as a single spike to the right of the mean. C and D, the 0.1%
percentile of the population spreadsenly from 0 to &5 to the right of the bulk population mean as a constant function. Both assay
variability (oJ/os) values of 0.1 (in A and C) and 1.0 (in B and D) were used in the calculation. Dashed lines represent the CR and FNR
from a pure Gaussian population, as in Figures 2 and 3. The calculation is performed using the IMSL QDAG univarate quadrature routine
(see Appendix).

population contributes very little to the CR and FNR positive rate, and false negative rate. As shown in Figure 4,
calculation since it is far away from the hit limit. Instead, the confirmation rate can increase significantly (instead of
the small number of potent substances near or to the rightdecrease in a pure Gaussian distribution) as the hit limit is
of the hit limit will contribute more to the calculation. (These set further away (to some extent) from the bulk of the

potent substances usually do not belong to the bulk popula-population. It can be seen that, while for a pure Gaussian
tion distribution.) In this scenario, the CR and FNR in eqs 1 population the confirmation rate decreases with increasing
and 3 are essentially dictated by the primary hit profile, rather hit limit value, the confirmation rate for many populations

than the bulk of the population. Thus, the result may severely may have a local maximum value existing at a certain hit
deviate from the calculations shown in Figures 2 and 3, as limit value outside the major population envelope. This result

shown in Figure 4. agrees with the frequently encountered situations where
The third scenario is when the assay quality is sufficiently higher confirmation rates were obtained with higher hit limit
high (Z ~ 0.5) and/or the hit limit cutoff is set at3os. In cutoff values (vide supra). It is therefore very important to

this case, both the bulk population and the primary hit profile set a hit limit that will most effectively identify the hits of
affect the calculations in eqs 1 and 3. Figure 4 shows the desired potency.

simulated results when the bulk population (assumed to be . i . ) . . .

99.9%) obeys a Gaussian distribution at one mean (no  Hit Confirmation Estimation Using the Primary

activity) and the rest (0.1%) of the population belongs to a Screening Results

second distribution which is distinct from the bulk distribu- After the completion of the entire primary screen, the
tion (see Figure 4 caption for details). The results clearly primary hits and their activity profile become a known
show that the CR and FNR gradually deviate from the pure characteristic of the screen. From these data, the confirmation
Gaussian population model when the hit limit is set away rate can be predicted based on the number of hits and their
from the mean of the bulk population. Particularly when the corresponding activity relative to the mean of the population
hit limit is set ath ~ 2.50, and beyond, the hit profile  and the assay quality. The formula for calculating the overall
(represented by the 0.1% population distribution in Figure confirmation rate is reduced from eq 1 to the following
4) has a significant effect on the confirmation rate, false discrete function
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Nmax 1, P, distribution (for example, a nonrandom, biased, or very small
CR=) — (4) library), the activity profile of the population could be
21 N (equivalenttoeq1l)  severely skewed or even bimodal. In these cases the real
results will be significantly different from the model predic-
and the false negative rate (eq 3) becomes tion. Best prediction results can be anticipated when the

normality is good and the hit limit is set less than three
standard deviations away from the population mean. How-

'
M max

anpi ever, normality has little effect on the hit identification or
ENR = a (5) hit confirmation if the analysis is based on the primary
M max Nmax (equivalentto eq 3)  screening results (i.e., using egs 4 and 5). Furthermore, since
anPj + > nP the number of hits is usually small relative to the entire
= =

population, some degree of fluctuation from prediction is
expected, even for a population with relatively good normal-
ity.

Assay Format. The choice of assay format is usually
determined by the assay quality and feasibility for screening.
In the above statistical model, the assay format and conditions
used in primary screening and in retesting or confirmation
are assumed to be the same. However, each assay format
may also be biased or interfere with some set of substances
in the library. Therefore, in many cases, some subset of hits,
gas well as the false positive or false negative hits, from a
screen may be associated with the particular assay format.
For instance, for a receptor binding assay, the assay can be
set with either a limited amount of receptor or a limited
amount of ligand, depending on the particular format used.
The hits generated from these formats may not be identical.

Further Practical Considerations Some “undesirable” hits can also be assay format dependent.
In practice, various degrees of deviation from the above For instance, an assay format based on biotin-streptavidin

theoretical model for the confirmation rate can be observed. :r;)teractlrc])n for a parﬂcu(;ar a_ssay fmayt:‘!nq from .? Ch?? |c,al
Several practical factors or limitations that need to be Ibrary those compounds with a free biotin motif as ‘hits',

considered when applying the statistical model or comparing (These ‘hits’ are really format-assoc!ated artifacts and will
to the practical results are discussed below. eventually need to be screened out in follow-up tests.) The

Proportional Error. When the positive and negative screen process may also affect the confirmation of primary

controls of an assay show significantly different variability, h!ts. For _exa”_"'p'e’ even within t_he same assay format,
such as when there is a proportional error associated Withdﬁferent P'Pe“'f‘g methods may give different numbers of
the signal, the constant measurement error assumption nd2/S€ POsitive hits due to reagent carry-over.

longer holds true. For example, in a specific radiometric _ €oncentration. The concentration of the collection (e.g.,
assay, the negative control data (background) gives a lowlibrary compounds)_ at Whl(_:h_ the screening is condu_cted will
level DPM reading (e.g., 200 DPM with a standard deviation affect the population activity profile, thus affecting the
of 50 DPM), while the positive control (the full signal in ponﬂrmanon of hits. For most HTS programs, the screening
the assay range) has a high level DPM reading with a higher'S performed at one specific concentration. If only very potent
data variation (e.g., a 5000 DPM with a standard deviation hits are desired, the cpncentration can be set reIatingy low
of 300 DPM). In these cases, the errors may vary linearly (€-9-,~1 #M or lower in drug screening), when relatively
between those of the negative and positive control data (e.g. ek hits are desired the concentration can be set higher
from 50 DPM to 300 DPM). This can obviously result in  (€-9-, 10uM or higher in drug screening).

deviations from the constant error model prediction. Models ~ Systematic Error. One of the most important issues in
with proportional error assumption are possible. However, the HTS process is to have good control over the data
since each different assay has its own errors spread over &ariability as a function of time or reagent preparation. When
specific assay dynamic range, there would be a different errorapplying the model for prediction or screen validation,
“slope” for each specific assay. For this reason, a universal caution must be exercised in the error assessment (i.e.,
formula for confirmation analysis on proportional error is standard deviations) used in these calculations. The day-to-
not trivial. In this case, a crude but simple solution for day or batch-to-batch data variability and any possible
estimating the confirmation rate is to apply the constant error Systematic errors involved should be checked and remedied

in which n; is the number of primary hits at activity(>=h),

n; is the number of substances at activjity<h), and Nmax
andn’max are the maximum number of substances needed to
be considered for andj, respectively.P; and P; are the
probability of confirmation according to the accumulative
Gaussian functio®(v) above (Figure 1C), anly, (= Y n)

is the total number of positive hits identified from the primary
screen. Similarly, the confirmation rate within a certain
activity range can be evaluated whirepresents the total
number of hits within that range. Equations 4 and 5 are base
on the specific primary screen result and therefore are more
reliable and useful in post-screen hit evaluation and analysis.
Importantly, eqs 4 and 5 are applicable for any population
distribution as well as Gaussian.

assumption formula with the errat the hit limit which properly in order to obtain the most reliable error assessment
usually can be obtained by interpolating the errors of positive for the screen.
and negative control data. Other Errors. It should also be noted that the random

Normality. In cases where the activity profiles of the measurement errors of the assay and some possible system-
chemical or biological library deviated from the Gaussian atic errors are not the only error sources encountered in
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practice. Errors associated with the chemical (or biological) : 30, + 30

library used for screening (e.g., compound impurity, reactiv- Z=1- m

ity, degradation, interference, compound transfer error, etc.) ¢ ¢

may sometimes be the prominent sources of error. Thesein which u.- and u.. are denoted for the means of the

errors (noticed or unnoticed) could give rise to seemingly negative control signal and positive control signal, respec-

abnormal hit confirmation results. tively. The standard deviations of the signals are denoted as
Hit Limit Selection and Assay Quality. In many practical o.- andocy, respectively. Th&'-factor is a simple, dimen-

HTS programs, the threshold for hit declaration, or the hit sionless, and characteristic parameter for the quality of each

cutoff value, is usually a choice or compromise between assay.

practical requirements (desired activity, hit quantity or hit ~ Z-factor— It is defined as a screening window coefficient

rate, etc.) and the assay quality considerations (the falsewhich takes a formula similar to that of tf#-factor?®

positive and negative rates, etc.). The confirmation rate, the

false positive rate, and false negative rate can be effectively 7=1— 30, + 30;

optimized by reducing the data variability. This can be lus — el

achieved in practice either by optimizing the assay format/ )

conditions or by testing each individual substance multiple in Which us and . are denoted for the means of the

times. Alternatively, when the false negative hits are the POPUlation and control (usually background) signals, respec-

major concern, a two-tier strategy can be applied. One cantively, and the .S|gnal st_andard.d.ewatlons are denoted; as

first set a less stringent hit limit (e.g., at? as a filter, then ~ @ndag, respectively. This coefficient takes into account the

confirm the primary hits by multiple tests with a more @ssay signal dynamic range, the data variation assqmated with

stringent hit limit (e.g., at @) in order to find most of the the sample measurement in the presence of test library, and

hits with desired activity. In this case, the false negative rate e data variation associated with the reference control

is minimized at the expense of confirmation rate. measurement. _ _
(b) Formula Derivation for a Gaussian Population.To
Summary deduce the statistical model for the hit confirmation rate

(CR), the false positive rate (FPR), and false negative rate
A statistical model for evaluating the confirmation, the (FNR), it is first assumed that each individual hit, when tested
false positive, and false negative rates of the active substancegepeatedly, regardless of its activity, exhibits a variability
from a high throughput screen is presented. This statistical profile of a Gaussian distribution, with a constant standard
model provides a useful tool in validation of high throughput deviation, o, (the constant error assumption). Under this
screens as well as in post-screening data analysis. The modeissumption, the probability function for hit confirmation,
presented here should be generally applicable to mostP(y), in eqs 1 and 3 can be expressed as the cumulative
chemical and biological random screening systems. function of a Gaussian distribution function for the variability
of measurementd(w). It is further assumed that for any
Acknowledgment. The authors thank Steven J. Cottrell |arge, unbiased, random population, the activity profile from
for performing the simulation calculations and Drs. Peter G. this population obeys or approximates a Gaussian distribu-
Schultz, Frances H. Arnold, and Anne Gershenson for tion. Under this assumption, the formula for the population

reading of the manuscript and helpful discussions. distribution, f(u), can also be estimated by a Gaussian
. function.
Appendix Let X be the discrete variable (with a meas) andU be

the standardized discrete variables tprthe standardized
variable of the Gaussian distribution of a populatié(),
with a standard deviatiorss. Thus

(a) Symbols and Terms Used in the Text.

h — the hit limit or hit cutoff value in the unit of standard
deviation of the population activity distribution.

u — the activity in the unit of standard deviation of the f(u) = 1W2x g ur2 (A1)
population activity distribution.

0. — standard deviation of the measurement for assay WhereU = (X — us)/os,
control data. Also, letWandV be the discrete variables for the Gaussian
and accumulative Gaussian distributions for measurement
}/ariability, f(w) and P(v), respectively, with a standard
deviation, sc. Thus

os — standard deviation of the measurement for test
population data. It contains both the assay measurement erro
and the variability between each member of the library (i.e.,

diversity or treatment effect). For a large random library, it W
assumgs the bulk of the )populationg distribution prgfile fw) = Wame™™ (A2)
roughly approximates a Gaussian distribution. and

us — the mean of the population.

Z'-factor — The Z'-factor has been defined as the ratio of P(v) = P(— < V < 0) = 127 f_vme_wz’z dw (A3)

the separation band to the dynamic range of the assay, based
on the positive control and negative control data of the aksay. whereV = (U — h)/o..
It takes the formula Plugging these formulas in to egs 1 and 3 in the text gives
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subinterval inf(u) in [—oco, h]. The QDAGI routine is used
to evaluatef(u) in egs 3 and A5 over the intervals-fo, h]
and |, o].

References and Notes

CR — (A4)
ﬁ] e—U /2 dU
and (1)
FNR = )
h —w@2 VvV w2
e e dw du
f—oo f —o ( A5) )

f_hwe’uz/ [ Vme’wz/ 2 dw du + ﬁfe’uz’ [ Vme’wz’ 2 dw du 4)
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Equations A4 and A5 above are derived for a screen where
each substance is measured only once. If multiple indepen- (g)
dent measurements are performed for each data point, then
the standard deviation of the mean mfmeasurements is
given byoae= odv/n. Use ofV = (U — h)/gaeor V= +vn
(U — h)loc in eq A3 will yield P(v) for multiple measure-
ments.

(c) Experimental Protocol. The evaluation of the areas
under the Gaussian curves was performed using either the
QDAG or QDAGI routines from the IMSL Fortran library.
The QDAGI routine is used to evaludi@) in the numerator
and the denominator of eq 1 and A4. The QDAGI routine
uses a 21-point Gauss-Kronod rule to estimate the interval
[h, +oo], after first transforming the semi-infinite interval
into the finite interval [0, 1]. The functioR(v) was evaluated
using the general-purpose QDAG routine for integrating
bounded intervals. For a given hit limit and for each
subinterval inf(u), the integration ofP(v) was performed
by estimating the area under the probability curve fie(d)
= 0.5 toP(+) = 1.0, after first dividing by the value for
o.. QDAG is also used to evaluaf(v) in the numerator
and denominator of eqs 3 and A5 for the area under the
probability curve fromP(—e) = 0 to P(0) = 0.5, for each
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