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Approach and Practical Considerations

Ji-Hu Zhang,* Thomas D.Y. Chung, and Kevin R. Oldenburg

Leads DiscoVery, Experimental Station, DuPont Pharmaceuticals Company, P.O. Box 80400,
Wilmington, Delaware 19880-0400

ReceiVed NoVember 3, 1999

Many biologically important substances are discovered through screening of relevant chemical or biological
libraries. The ability to find the active substances (“hits”) from any random collection is largely determined
by the quality of the assay and screening conditions. When a large population is screened for a specific
characteristic, each member of that population is usually tested only once. Errors in the measurements require
additional follow-up tests to confirm that each hit from the primary screen is trulyactiVe. In this report, we
present a statistical model system that predicts the reliability of hits from a primary test as affected by the
error in the assay and the choice of the hit threshold (hit limit). The hit confirmation rate, as well as false
positive (representing substances that initially fall above the hit limit but whose true activity are below the
hit limit) and false negative (representing substances that initially fall below the hit limit but whose true
activity are in fact greater than the hit limit) rates have been analyzed with this model by computational
simulation. This model can also be used in screen validation and post-screening data analysis. The statistical
analysis presented here has broad implications and is applicable to screening of any large population for
any specific characteristic. Obvious applications include drug discovery, gene chip analysis, population
biology, directed molecular evolution, biological panning, and combinatorial material sciences.

Introduction

Screening of random compound collections for identifica-
tion of leads for drug development has been largely a
practical endeavor in the pharmaceutical industry for many
years.1,2 Recent advances in drug target identification,3-5

chemical compound library construction,6,7 development of
high throughput assay methodologies,8 instrumentation,
automation, and ADME (adsorption, distribution, metabo-
lism, and excretion) characterization have transformed the
area of high throughput drug screening into a rapidly
growing, multi-disciplinary scientific and technological field.
As the throughput of screening increases and the strategies
for construction of chemical libraries is optimized, it is almost
certain that the number of active compounds (“hits”) resulting
from primary screening will increase considerably. The
efforts to confirm the activity of these increasing numbers
of primary hits, either from a potency screen or an ADME-
type screen, will be nontrivial.

In most high throughput screening (HTS) programs, each
substance is usually tested only in singlet due to reagent,
labor, time, and cost considerations. Hits need to be identified
in the presence of and despite a certain degree of variability
in signal measurement from any assay. A high degree of
accuracy and sensitivity in the assay is therefore critical for
identifying hits. Ahigh qualityHTS assay must be able to
identify, with a high degree of confidence, those few

substances that display (biological) activity significantly
different from the rest of the chemical or biological library.
One of the fundamental issues that needs to be clarified is
the reliability (or confirmation) of screening results and the
main factors affecting it. Moreover, since each HTS cam-
paign is a significant expenditure in terms of labor, time,
and resources, it is crucial to have, during the assay and
screen validation process, a quantitative analysis of the
capability of a particular screen to identify the majority of
potential hits residing in the chemical or biological library.
The confirmation rate of hits from the primary screen is
mainly affected by (a) the HTS assay quality, (b) the hit
limit selection, and (c) the primary hit profile. Among them,
the assay quality plays the primary role in determining the
hit confirmation rate.9 The scope of this paper is to further
delineate the effects of these factors on the primary hit
confirmation rate as well as on the false positive and false
negative rates, from both a statistical and a practical view.

The drug discovery analysis presented here is a specific
case from the broad spectrum of possible applications of this
statistical model. There are obvious implications in areas such
as population biology, directed molecular evolution, biologi-
cal panning, gene chip analysis, and combinatorial material
sciences.

A Statistical Model

Screening a large, random chemical or biological popula-
tion in order to find the few active substances (hits) involves* To whom correspondence should be addressed.
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statistical decisions. These statistical decisions are related
to classical hypothesis testing used in quality control evalu-
ation.10 For drug screening, a substance (compound) scores
as “active” when its activity liesat or beyond the set
threshold (i.e., the substance shows an activity different from
the mean activity of the population by the threshold value).
The threshold (thehit limit) for declaring ahit (usually an
activity outlier) is generally expressed as a certain activity
value or a number of standard deviations away from the mean
of the library population in a primary screen. To be consistent
and avoid any discrepancy in derivation and use of the
working model and its conclusions, the term “confirmation”
of hits is specified here as the following.

Confirmation.Upon retesting, aconfirmedhit is defined
as having an activityequal to or greater thanthe threshold
value (the hit limit) by which the primary hits were identified
in the primary screen.

Thus, the hit confirmation raterefers to the ratio of the
number of confirmed hits to the total number of primary
hits included in the confirmation testing from a primary
screen. Figure 1 illustrates the population distribution and
the hit confirmation probability. Clearly, the primary hits
are the fraction of the population to the right of the hit limit,
h (shaded area in Figure 1A. See Appendix for an explanation
of each symbol or abbreviation used in the text).

At activity U, the confirmation rate is proportional to the
probability of a hit being confirmed9 multiplied by the
frequency (or density) of compounds at that activity.
Therefore, the overall confirmation rate (CR) for all the
primary hits (u g h) from a population screen is

whereP(V) is the probability function for hit confirmation
(Figure 1C, which is related to the variability of measure-
ments in the screen, Figure 1B) andf(u) is the distribution

density function (or distribution of population, Figure 1A).
f(u) in eq 1 can be any function that approximates the
population distribution. The numerator integral in eq 1
represents the total confirmed hits, and the denominator
integral corresponds to the total number of primary hits.

The probability of false positives and false negatives can
also be assessed.False positiVe hits refer to those primary
hits that are subsequently shown to have an actual activity
below the hit limit. The overallfalse positiVe rate(FPR) is
given by

False negatiVe hitsare those that are missed in a primary
screen. Thefalse negatiVe rate(FNR) of a screen is defined
as the following:

FNR ) number of missed hits/(number of missed hits+
number of confirmed hits).

The expression for calculating the false negative hit rate
is thus given by

where again,P(V) is the probability function for hit confir-
mation andf(u) is the distribution density function (distribu-
tion of population, Figure 1). It should be noted here that
the confirmation, false positive and false negative hit rates
defined above are conventional in drug screening1 and may
be distinct from those used in statistical hypothesis testing.10

In the same vein, statistical “outliers” may not be the only
hits in conventional drug screening.

A Case Study: A Gaussian Population Approach for
Confirmation, False Positive, and False Negative Rates

To deduce a useful statistical model for the hit confirma-
tion rate, it is first assumed that each individual hit, when
tested repeatedly, regardless of its activity, exhibits a
Gaussian distribution profile around its “true” value of
activity. Second it is assumed that the error at any point in
the activity dynamic range is kept the same, with aconstant
standard deviation,σc (the constant error assumption). The
latter assumption is for the simplicity of the model and is
obviously not always true since in many cases the errors are
“proportional” (vide infra).

Under these assumptions, the probability function for hit
confirmation,P(V), in eqs 1 and 3 can be expressed as the
cumulative function of a Gaussian distribution function for
the variability of measurements,f(w), which is closely related
to the error function (Figure 1B). It should be noted that
P(V) is the same function used for the probability of a
substance being declared a hit (scored “positive”) in primary
screening.9,11

Different chemical and biological libraries will have
different population distribution profiles. As a case study, it
is further assumed here that the (chemical or biological)
population approximates a Gaussian or normal distribution.
This is mainly for the theoretical calculations as in many
practical cases the population distribution will deviate from

Figure 1. Illustrations of the statistical distribution functions used
in the text: A, the population distribution,f(u), in respect to the
hit limit (h) and primary hits (shaded area). Functionf(u) a priori
can be any population distribution. A Gaussian distribution is
assumed here forf(u) with a standard deviation,σs. B, the
measurement variability function,f(w), which is a Gaussian
distribution with a standard deviation,σc. C, the corresponding
cumulative Gaussian distribution off(w), namely P(V), which
represents the confirmation probability of a compound at a specific
activity (shown one at+U and one at-U) in respect to the hit
limit (h).

CR )
∫h

∞
f(u) P(V) du

∫h

∞
f(u) du

(1)

FPR) 1 - CR (2)

FNR )
∫-∞

h
f(u) P(V) du

∫-∞

h
f(u) P(V) du + ∫h

∞
f(u) P(V) du

(3)
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Gaussian. (The distribution of a particular variable of a
population may deviate at various extents from an ideal
Gaussian distribution in modality, skewness, kurtosis, etc.)
However, for the primary screen based on a large, unbiased,
random chemical or biological library, the activity profiles
from these chemical or biological populations would ap-
proximate a Gaussian or normal distribution based on the
central limit theorem. This assumption largely holds true for
at least the bulk of the population of random collections.9,11

Under these limitations, the formula for the population
distribution,f(u), can be estimated by a Gaussian distribution
function, with a standard deviation ofσs. Therefore,σs

contains both the variability between different members of
the library (i.e., treatment effect or diversity) and the
measurement error of the assay.

Under the above assumptions, the hit confirmation rate
(CR), the false positive rate (FPR), and the false negative
rate (FNR) can be expressed as functions ofσc (the standard
deviation of the Gaussian function for measurement vari-
ability), σs (the standard deviation of the bulk population
distribution, this representing a combination of treatment
effects and assay measurement error), andh (the hit limit
cutoff value). The detailed expression equations and their
deduction are given in the Appendix of this article. From
these equations (eqs A4 and A5 in Appendix), the CR and
FNR values at the extremes can be deduced. For example,
when the assay has no measurement error, i.e., whenσc f

0, P(V) f 1 (for activity U g h) or P(V) f 0 (for U < h).
This is equivalent toP(V) being a step function ath. Thus,
CR f 1 and FNRf 0. These results are obvious because
when there is no error in measurement, every primary hit
should be a true hit and no hit is missed from the screen. At
the other extreme, whenσc is extremely large (σc f ∞), then
P(V) f 0.5, and CRf 0.5. All the declared hits have a
50-50 chance of being confirmed. CR) 0.5 is therefore
the lower limit for the hit confirmation rate. FNR under this
extreme condition depends solely on the hit limit setting.

The hit limit setting not only affects the number of declared
hits from a given screen, but also affects the number of false-
positive and false-negative hits. Basically, the hit limit setting
(h) affects the hit confirmation rate and the false negative
rate by changing the integration boundaries of eqs 1 and 3.
It should be noted that eq 1 defines theoVerall hit
confirmation rate (u g h) of a Gaussian population and can
be easily modified for calculating the hit confirmation rate
within any given range of activity froma to b (b >a g h),
by adapting these boundaries to the integrals in the equation.
Most notably, it will give the confirmation rate of a specific
“bin” of primary hits.

Equations 1 and 3 above are derived for a screen where
each compound is measured only once. If multiple indepen-
dent measurements are performed for each data point, then
the standard deviation of the mean ofn measurements is
given by σave ) σc/xn. Use of σave in place of σc in the
equations will yield the confirmation rate for multiple
measurements (see Appendix).

Effects of Hit Limit Setting and Screening Assay
Quality

Figure 2 shows a series of curves that simulate the overall
confirmation rate (see eq A4 in Appendix) as a function of
the distance that the hit limit is placed from the mean activity
of the population (µs), in units of standard deviation (σs),
based on a Gaussian population. Numerical integration was
performed using the IMSL QDAG univariate quadrature
routine (ref 12, see Experimental Protocol in Appendix). The
results from this calculation demonstrate that the overall
confirmation rate of the primary hits varies with the
placement of the hit limit and the assay quality. Intuitively,
if only potent hits were chosen from the primary screen, the
likelihood of these hits being confirmed is high. Somewhat
surprisingly, the general trend is that the overall confirmation
rate decreases as the hit limit (h) moves further away from
the mean activity of the Gaussian population (µs). The
decrease in the confirmation rate is more prominent in the
early part of the curve and gradually levels off as the hit
limit is further away from the activity mean of the population.
For any screen with a finite measurement error (σc), the
confirmation rate approaches 0.5 when the hit limit is set
infinitely far from the mean of the population. Consequently,
setting the hit limit further away from the activity mean of
the Gaussian population will yield hits with higher activity
(at higher confidence level for being “outliers”) but will
decrease the hit confirmation rate. The reasons for this
seemingly counter-intuitive result are severalfold. First, as
mentioned earlier, the definition of a “confirmed hit” is to
compare the hit’s activity from confirmation testing to the
pre-set “hit limit” value in the primary screen rather than to
the population activity mean. Second, this result is based on
a pure Gaussian population model. When the normality of a
real population deviates from pure Gaussian, which is usually

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Figure 2. Calculated confirmation rate curves based on eq 1 in
the text. Thex-axis is the distance of the hit limit from the mean
activity of the population, in standard deviations (σs). σs contains
both the assay measurement error and the variability between each
members of the library (i.e., treatment effect). Each line represents
a specific assay variability ratio (σc /σs) as indicated. The curve
beyond 3σs is shown mainly for displaying the trend of the curve
for a pure Gaussian distribution, since any hit in this range (>3σs)
is likely to belong to a second population distribution. When the
hit limit is set infinitely far to the right from the population mean,
all the curves will approach CR) 0.5 (shown as the horizontal
dotted line). The calculation is performed using the IMSL QDAG
univarate quadrature routine (see Appendix).
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the case, the confirmation rate prediction in these cases would
deviate from the model case, particularly when the hit limit
is set beyond 3σs from the population mean, as will be
discussed further in the next sections.

It is important to note that the confirmation rate depends
heavily on the assay variability,σc. The confirmation rate
improves significantly asσc decreases. For example, at a hit
limit set at 3σs, an assay with variability (σc) values of 1.0σs,
0.5σs, and 0.2σs will yield overall hit confirmation rates of
0.60, 0.69, and 0.81, respectively (Figure 2). The assay
variability also determines the lower hit limit setting. The
lower hit limit is the lower limit of detection (LLD) of the
assay, i.e., ath g 3σc above the mean activity (which is
equal or close to zero). These results clearly indicate that
the assay data variability plays an important part in determin-
ing the confidence level of the primary hits generated from
the screen. Recently it has been suggested that the assay
quality can be expressed by theZ′-factor9 (Z′ ) 1 - (3σc+

+3σc-)/|µc+ - µc-|, see Appendix forZ′-factor andZ-factor
definitions.). It can be seen that, under the above constant
error assumption (such thatσc+ and σc- are equal or
comparable toσc), theZ′-factor is inversely proportional to
σc, assuming the dynamic range of the assay is kept constant.
Therefore, the assay quality (theZ′-factor) has a direct effect
on the confirmation rate when the assay is used for screening.
It is interesting to note that the confirmation rate has a direct
relationship with theZ′-factor of the assay, not necessarily
with the Z-factor of the screen. The reason for this is that
the Z-factor for a screen is more indicatiVe of the screen
“window” for identifying hits and is test library sensitiVe
while the Z′-factor is indicatiVe of the measurementVari-
ability of the assay and is test library independent.9

On the basis of eq 2, the curves that describe the false
positive hit rate (FPR) are therefore the mirror images (about
the line CR) 0.5 in Figure 2) of those for the confirmation
rate. Figure 3 shows the calculated false negative hit rate as
a function of the hit limit and assay quality (see Experimental

Protocol in Appendix for calculation details). It can be seen
that, as the assay quality deteriorates (σc becomes larger),
the false negative rate increases sharply then levels off as it
approaches a maximum value of 1. For example, whenσc

) 0.3σs (the assay variation (σc) is about 30% of the standard
deviation of the Gaussian population (σs)) and the hit limit
is set at 2.5σs from the mean, the assay will miss ap-
proximately 50% of the potential hits in the primary screen.
Also, setting the hit limit further away from the mean of the
population will increase the false negative rate. Therefore,
this poses a dilemma as to where to set the hit limit for a
Gaussian population. Setting the hit limit distant from the
mean of the population will increase the activity (potency)
and confidence limit of the hits (being different from the
population mean) but also will increaseboththe false positive
and false negative rates in a primary screen (only true for a
pure Gaussian model). However, when the hit limit is set at
∼3σs or beyond, this pure Gaussian model calculation would
deviate from many practical populations as those potent
compounds, which are outliers of the population, should
actually belong to a second population (vide infra).

Equation 3 is crucial in the evaluation of the false negative
rate for any particular screen because the false negative rate,
unlike the false positive rate, cannot be assessed easily in
practice. Equation 3 (and its equivalent eq A5 in Appedix)
provides a theoretical method for evaluating the false
negative rate. However, the calculations shown in Figures 2
and 3 only represent an ideal case when the population
distribution obeys aGaussian distribution. In practice,
various deviations from this theoretical analysis can be
encountered. Several important practical considerations are
discussed in the next sections.

Effects of Primary Hit Profile

The overall number of hits and the confirmation rate for
these hits can be projected early in the validation process of
the screen once the assay quality and the hit limit are known.
Equations 1 and 3 can be employed to estimate the outcome
of the screen from the validation and initial screening data.
It has been indicated previously that the overall outcome from
a screen depends mainly on (a) the screen assay quality, (b)
the hit limit selection, and (c) the primary hit activity profile.9

The hit profile from a primary screen is largely governed
by the library diversity and concentration used in the screen.
In practice, there are basically three scenarios that need to
be considered.

The first scenario is when the hit limit is chosen< 3σs,
e.g.,∼2σs. This will intrinsically yield high overall hit rates
(∼2% for a Gaussian population distribution). This is
typically true when weaker hits are desired and/or the
screening quality is not superior (0< Z , 0.5). In this
scenario, the bulk population distribution (which approxi-
mates a Gaussian) dominates the calculation around the hit
limit. Therefore, the confirmation rate (CR) and false
negative rate (FNR) can be estimated quite well from the
calculations shown in Figures 2 and 3.

In the second scenario, usually when the assay quality is
very high (Z > 0.5) and only potent hits are of interest, the
hit limit can be set at>3σs. In this case, the bulk of the

Figure 3. Calculated false negative rate curves based on eq 4 in
the text. Thex-axis is the distance of the hit limit from the mean
activity of the population, in standard deviations (σs). σs contains
both the assay measurement error and the variability between each
members of the library (i.e., treatment effect). Each line represents
a specific assay variability ratio (σc/σs) as indicated. The curve
beyond 3σs is shown mainly for displaying the trend of the curve
for a pure Gaussian distribution, since any hit in this range (>3σs)
is likely to belong to a second population distribution.
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population contributes very little to the CR and FNR
calculation since it is far away from the hit limit. Instead,
the small number of potent substances near or to the right
of the hit limit will contribute more to the calculation. (These
potent substances usually do not belong to the bulk popula-
tion distribution.) In this scenario, the CR and FNR in eqs 1
and 3 are essentially dictated by the primary hit profile, rather
than the bulk of the population. Thus, the result may severely
deviate from the calculations shown in Figures 2 and 3, as
shown in Figure 4.

The third scenario is when the assay quality is sufficiently
high (Z ∼ 0.5) and/or the hit limit cutoff is set at∼3σs. In
this case, both the bulk population and the primary hit profile
affect the calculations in eqs 1 and 3. Figure 4 shows the
simulated results when the bulk population (assumed to be
99.9%) obeys a Gaussian distribution at one mean (no
activity) and the rest (0.1%) of the population belongs to a
second distribution which is distinct from the bulk distribu-
tion (see Figure 4 caption for details). The results clearly
show that the CR and FNR gradually deviate from the pure
Gaussian population model when the hit limit is set away
from the mean of the bulk population. Particularly when the
hit limit is set at h ∼ 2.5σs and beyond, the hit profile
(represented by the 0.1% population distribution in Figure
4) has a significant effect on the confirmation rate, false

positive rate, and false negative rate. As shown in Figure 4,
the confirmation rate can increase significantly (instead of
decrease in a pure Gaussian distribution) as the hit limit is
set further away (to some extent) from the bulk of the
population. It can be seen that, while for a pure Gaussian
population the confirmation rate decreases with increasing
hit limit value, the confirmation rate for many populations
may have a local maximum value existing at a certain hit
limit value outside the major population envelope. This result
agrees with the frequently encountered situations where
higher confirmation rates were obtained with higher hit limit
cutoff values (vide supra). It is therefore very important to
set a hit limit that will most effectively identify the hits of
desired potency.

Hit Confirmation Estimation Using the Primary
Screening Results

After the completion of the entire primary screen, the
primary hits and their activity profile become a known
characteristic of the screen. From these data, the confirmation
rate can be predicted based on the number of hits and their
corresponding activity relative to the mean of the population
and the assay quality. The formula for calculating the overall
confirmation rate is reduced from eq 1 to the following
discrete function

Figure 4. Calculated confirmation rate (CR, shown asb) and the false negative rate (FNR, shown as×) of a population when 99.9% (the
bulk population) obeys a Gaussian distribution and 0.1% of the population belongs to a second distribution. A and B, the 0.1% percentile
of the population resides at 6σs from the mean of the bulk population, as a single spike to the right of the mean. C and D, the 0.1%
percentile of the population spreadseVenly from 0 to 6σs to the right of the bulk population mean as a constant function. Both assay
variability (σc/σs) values of 0.1 (in A and C) and 1.0 (in B and D) were used in the calculation. Dashed lines represent the CR and FNR
from a pure Gaussian population, as in Figures 2 and 3. The calculation is performed using the IMSL QDAG univarate quadrature routine
(see Appendix).
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and the false negative rate (eq 3) becomes

in which ni is the number of primary hits at activityi (gh),
nj is the number of substances at activityj (<h), andnmax

andn′max are the maximum number of substances needed to
be considered fori and j, respectively.Pi and Pj are the
probability of confirmation according to the accumulative
Gaussian functionP(V) above (Figure 1C), andNtp () ∑ni)
is the total number of positive hits identified from the primary
screen. Similarly, the confirmation rate within a certain
activity range can be evaluated whenN represents the total
number of hits within that range. Equations 4 and 5 are based
on the specific primary screen result and therefore are more
reliable and useful in post-screen hit evaluation and analysis.
Importantly, eqs 4 and 5 are applicable for any population
distribution as well as Gaussian.

Further Practical Considerations

In practice, various degrees of deviation from the above
theoretical model for the confirmation rate can be observed.
Several practical factors or limitations that need to be
considered when applying the statistical model or comparing
to the practical results are discussed below.

Proportional Error. When the positive and negative
controls of an assay show significantly different variability,
such as when there is a proportional error associated with
the signal, the constant measurement error assumption no
longer holds true. For example, in a specific radiometric
assay, the negative control data (background) gives a low
level DPM reading (e.g., 200 DPM with a standard deviation
of 50 DPM), while the positive control (the full signal in
the assay range) has a high level DPM reading with a higher
data variation (e.g., a 5000 DPM with a standard deviation
of 300 DPM). In these cases, the errors may vary linearly
between those of the negative and positive control data (e.g.,
from 50 DPM to 300 DPM). This can obviously result in
deviations from the constant error model prediction. Models
with proportional error assumption are possible. However,
since each different assay has its own errors spread over a
specific assay dynamic range, there would be a different error
“slope” for each specific assay. For this reason, a universal
formula for confirmation analysis on proportional error is
not trivial. In this case, a crude but simple solution for
estimating the confirmation rate is to apply the constant error
assumption formula with the errorat the hit limit, which
usually can be obtained by interpolating the errors of positive
and negative control data.

Normality. In cases where the activity profiles of the
chemical or biological library deviated from the Gaussian

distribution (for example, a nonrandom, biased, or very small
library), the activity profile of the population could be
severely skewed or even bimodal. In these cases the real
results will be significantly different from the model predic-
tion. Best prediction results can be anticipated when the
normality is good and the hit limit is set less than three
standard deviations away from the population mean. How-
ever, normality has little effect on the hit identification or
hit confirmation if the analysis is based on the primary
screening results (i.e., using eqs 4 and 5). Furthermore, since
the number of hits is usually small relative to the entire
population, some degree of fluctuation from prediction is
expected, even for a population with relatively good normal-
ity.

Assay Format. The choice of assay format is usually
determined by the assay quality and feasibility for screening.
In the above statistical model, the assay format and conditions
used in primary screening and in retesting or confirmation
are assumed to be the same. However, each assay format
may also be biased or interfere with some set of substances
in the library. Therefore, in many cases, some subset of hits,
as well as the false positive or false negative hits, from a
screen may be associated with the particular assay format.
For instance, for a receptor binding assay, the assay can be
set with either a limited amount of receptor or a limited
amount of ligand, depending on the particular format used.
The hits generated from these formats may not be identical.
Some “undesirable” hits can also be assay format dependent.
For instance, an assay format based on biotin-streptavidin
interaction for a particular assay may find from a chemical
library those compounds with a free biotin motif as ‘hits’.
(These ‘hits’ are really format-associated artifacts and will
eventually need to be screened out in follow-up tests.) The
screen process may also affect the confirmation of primary
hits. For example, even within the same assay format,
different pipetting methods may give different numbers of
false positive hits due to reagent carry-over.

Concentration. The concentration of the collection (e.g.,
library compounds) at which the screening is conducted will
affect the population activity profile, thus affecting the
confirmation of hits. For most HTS programs, the screening
is performed at one specific concentration. If only very potent
hits are desired, the concentration can be set relatively low
(e.g.,∼1 µM or lower in drug screening), when relatively
weak hits are desired the concentration can be set higher
(e.g., 10µM or higher in drug screening).

Systematic Error. One of the most important issues in
the HTS process is to have good control over the data
variability as a function of time or reagent preparation. When
applying the model for prediction or screen validation,
caution must be exercised in the error assessment (i.e.,
standard deviations) used in these calculations. The day-to-
day or batch-to-batch data variability and any possible
systematic errors involved should be checked and remedied
properly in order to obtain the most reliable error assessment
for the screen.

Other Errors. It should also be noted that the random
measurement errors of the assay and some possible system-
atic errors are not the only error sources encountered in

CR ) ∑
i)1

nmax niPi

Ntp

(4)
(equivalent to eq 1)

FNR )

∑
j)1

n′max

njPj

∑
j)1

n′max

njPj + ∑
i)1

nmax

niPi

(5)
(equivalent to eq 3)
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practice. Errors associated with the chemical (or biological)
library used for screening (e.g., compound impurity, reactiv-
ity, degradation, interference, compound transfer error, etc.)
may sometimes be the prominent sources of error. These
errors (noticed or unnoticed) could give rise to seemingly
abnormal hit confirmation results.

Hit Limit Selection and Assay Quality. In many practical
HTS programs, the threshold for hit declaration, or the hit
cutoff value, is usually a choice or compromise between
practical requirements (desired activity, hit quantity or hit
rate, etc.) and the assay quality considerations (the false
positive and negative rates, etc.). The confirmation rate, the
false positive rate, and false negative rate can be effectively
optimized by reducing the data variability. This can be
achieved in practice either by optimizing the assay format/
conditions or by testing each individual substance multiple
times. Alternatively, when the false negative hits are the
major concern, a two-tier strategy can be applied. One can
first set a less stringent hit limit (e.g., at 2σs) as a filter, then
confirm the primary hits by multiple tests with a more
stringent hit limit (e.g., at 3σs) in order to find most of the
hits with desired activity. In this case, the false negative rate
is minimized at the expense of confirmation rate.

Summary

A statistical model for evaluating the confirmation, the
false positive, and false negative rates of the active substances
from a high throughput screen is presented. This statistical
model provides a useful tool in validation of high throughput
screens as well as in post-screening data analysis. The model
presented here should be generally applicable to most
chemical and biological random screening systems.
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Appendix

(a) Symbols and Terms Used in the Text.
h - the hit limit or hit cutoff value in the unit of standard

deviation of the population activity distribution.

u - the activity in the unit of standard deviation of the
population activity distribution.

σc - standard deviation of the measurement for assay
control data.

σs - standard deviation of the measurement for test
population data. It contains both the assay measurement error
and the variability between each member of the library (i.e.,
diversity or treatment effect). For a large random library, it
assumes the bulk of the population distribution profile
roughly approximates a Gaussian distribution.

µs - the mean of the population.

Z′-factor- TheZ′-factor has been defined as the ratio of
the separation band to the dynamic range of the assay, based
on the positive control and negative control data of the assay.9

It takes the formula

in which µc- and µc+ are denoted for the means of the
negative control signal and positive control signal, respec-
tively. The standard deviations of the signals are denoted as
σc- andσc+, respectively. TheZ′-factor is a simple, dimen-
sionless, and characteristic parameter for the quality of each
assay.

Z-factor- It is defined as a screening window coefficient
which takes a formula similar to that of theZ′-factor.9

in which µs and µc are denoted for the means of the
population and control (usually background) signals, respec-
tively, and the signal standard deviations are denoted asσs

andσc, respectively. This coefficient takes into account the
assay signal dynamic range, the data variation associated with
the sample measurement in the presence of test library, and
the data variation associated with the reference control
measurement.

(b) Formula Derivation for a Gaussian Population.To
deduce the statistical model for the hit confirmation rate
(CR), the false positive rate (FPR), and false negative rate
(FNR), it is first assumed that each individual hit, when tested
repeatedly, regardless of its activity, exhibits a variability
profile of a Gaussian distribution, with a constant standard
deviation, σc (the constant error assumption). Under this
assumption, the probability function for hit confirmation,
P(V), in eqs 1 and 3 can be expressed as the cumulative
function of a Gaussian distribution function for the variability
of measurements,f(w). It is further assumed that for any
large, unbiased, random population, the activity profile from
this population obeys or approximates a Gaussian distribu-
tion. Under this assumption, the formula for the population
distribution, f(u), can also be estimated by a Gaussian
function.

Let X be the discrete variable (with a mean,µs) andU be
the standardized discrete variables foru, the standardized
variable of the Gaussian distribution of a population,f(u),
with a standard deviation,σs. Thus

whereU ) (X - µs)/σs.
Also, letWandV be the discrete variables for the Gaussian

and accumulative Gaussian distributions for measurement
variability, f(w) and P(V), respectively, with a standard
deviation, sc. Thus

and

whereV ) (U - h)/σc.
Plugging these formulas in to eqs 1 and 3 in the text gives

Z′ ) 1 -
3σc+ + 3σc-

|µc+ - µc-|

Z ) 1 -
3σs + 3σc

|µs - µc|

f(u) ) 1/x2π e-u2/2 (A1)

f(w) ) 1/x2π e-w2/2 (A2)

P(V) ) P(-∞ e V e V) ) 1/x2π∫-∞

V
e-w2/2 dw (A3)
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and

Equations A4 and A5 above are derived for a screen where
each substance is measured only once. If multiple indepen-
dent measurements are performed for each data point, then
the standard deviation of the mean ofn measurements is
given byσave ) σc/xn. Use ofV ) (U - h)/σave or V ) xn
(U - h)/σc in eq A3 will yield P(V) for multiple measure-
ments.

(c) Experimental Protocol. The evaluation of the areas
under the Gaussian curves was performed using either the
QDAG or QDAGI routines from the IMSL Fortran library.
The QDAGI routine is used to evaluatef(u) in the numerator
and the denominator of eq 1 and A4. The QDAGI routine
uses a 21-point Gauss-Kronod rule to estimate the interval
[h, +∞], after first transforming the semi-infinite interval
into the finite interval [0, 1]. The functionP(V) was evaluated
using the general-purpose QDAG routine for integrating
bounded intervals. For a given hit limit and for each
subinterval inf(u), the integration ofP(V) was performed
by estimating the area under the probability curve fromP(0)
) 0.5 toP(+∞) ) 1.0, after first dividing by the value for
σc. QDAG is also used to evaluateP(V) in the numerator
and denominator of eqs 3 and A5 for the area under the
probability curve fromP(-∞) ) 0 to P(0) ) 0.5, for each

subinterval inf(u) in [-∞, h]. The QDAGI routine is used
to evaluatef(u) in eqs 3 and A5 over the intervals [-∞, h]
and [h, ∞].
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1/x2π∫h
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V
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e-u2/2 du
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FNR )

∫-∞

h
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V
e-w2/2 dw du
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